3.439 \(\int \frac {1}{(8 c-d x^3)^2 \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=64 \[ \frac {x \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {1}{3};2,\frac {1}{2};\frac {4}{3};\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{64 c^2 \sqrt {c+d x^3}} \]

[Out]

1/64*x*AppellF1(1/3,1/2,2,4/3,-d*x^3/c,1/8*d*x^3/c)*(1+d*x^3/c)^(1/2)/c^2/(d*x^3+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {430, 429} \[ \frac {x \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {1}{3};2,\frac {1}{2};\frac {4}{3};\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{64 c^2 \sqrt {c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(x*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 2, 1/2, 4/3, (d*x^3)/(8*c), -((d*x^3)/c)])/(64*c^2*Sqrt[c + d*x^3])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {1}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx &=\frac {\sqrt {1+\frac {d x^3}{c}} \int \frac {1}{\left (8 c-d x^3\right )^2 \sqrt {1+\frac {d x^3}{c}}} \, dx}{\sqrt {c+d x^3}}\\ &=\frac {x \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {1}{3};2,\frac {1}{2};\frac {4}{3};\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{64 c^2 \sqrt {c+d x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.19, size = 237, normalized size = 3.70 \[ \frac {x \left (\frac {d x^3 \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {4}{3};\frac {1}{2},1;\frac {7}{3};-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{c^3}+\frac {64 \left (\frac {832 F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{3 d x^3 \left (F_1\left (\frac {4}{3};\frac {1}{2},2;\frac {7}{3};-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )-4 F_1\left (\frac {4}{3};\frac {3}{2},1;\frac {7}{3};-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )\right )+32 c F_1\left (\frac {1}{3};\frac {1}{2},1;\frac {4}{3};-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}+\frac {c+d x^3}{c^2}\right )}{8 c-d x^3}\right )}{13824 \sqrt {c+d x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(x*((d*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -((d*x^3)/c), (d*x^3)/(8*c)])/c^3 + (64*((c + d*x^3)
/c^2 + (832*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), (d*x^3)/(8*c)])/(32*c*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3
)/c), (d*x^3)/(8*c)] + 3*d*x^3*(AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), (d*x^3)/(8*c)] - 4*AppellF1[4/3, 3/2,
 1, 7/3, -((d*x^3)/c), (d*x^3)/(8*c)]))))/(8*c - d*x^3)))/(13824*Sqrt[c + d*x^3])

________________________________________________________________________________________

fricas [F]  time = 2.11, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {d x^{3} + c}}{d^{3} x^{9} - 15 \, c d^{2} x^{6} + 48 \, c^{2} d x^{3} + 64 \, c^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*x^3 + c)/(d^3*x^9 - 15*c*d^2*x^6 + 48*c^2*d*x^3 + 64*c^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2), x)

________________________________________________________________________________________

maple [C]  time = 0.18, size = 728, normalized size = 11.38 \[ -\frac {\sqrt {d \,x^{3}+c}\, x}{216 \left (d \,x^{3}-8 c \right ) c^{2}}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}}{-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{648 \sqrt {d \,x^{3}+c}\, c^{2} d}-\frac {5 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{18 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{972 c^{2} d^{3} \sqrt {d \,x^{3}+c}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x)

[Out]

-1/216*(d*x^3+c)^(1/2)/(d*x^3-8*c)/c^2*x+1/648*I/c^2*3^(1/2)*(-c*d^2)^(1/3)/d*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I
*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*
3^(1/2)*(-c*d^2)^(1/3)/d))^(1/2)*(-I*(x+1/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^
(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d
)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3
)/d)/d)^(1/2))-5/972*I/c^2/d^3*2^(1/2)*sum(1/_alpha^2*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-
c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)
^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_a
lpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*
EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1
/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2
)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2))
,_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {1}{\sqrt {d\,x^3+c}\,{\left (8\,c-d\,x^3\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2),x)

[Out]

int(1/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (- 8 c + d x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)

[Out]

Integral(1/((-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)

________________________________________________________________________________________